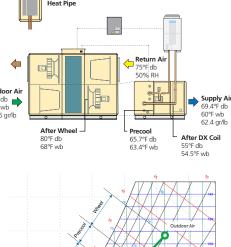
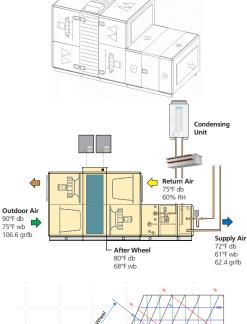
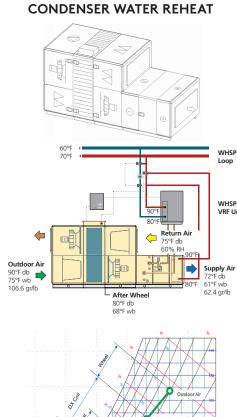

Swegon Performance			
Model	RX-25		
Supply Air	4,500 CFM		
Exhaust Air	4,500 CFM		
SA External Static	1.5-2.2" e.s.p.		
EA External Static	1.5-2.2" e.s.p.		
Supply Fan	4.6 HP		
Exhaust Fan	4.6 HP		
Rotary Wheel Sensible Efficiency	82.5%		
Summer Wheel Performance			
OA EDB Temp (F)	90		
OA EWB Temp (F)	75		
RA EDB Temp (F)	75		
RA EWB Temp (F)	62.6		
Summer Off Wheel DB	77.6		
Summer Off Wheel WB	65.9		
Rotary Wheel Latent Efficiency	72.0%		
Winter Wheel Performance			
OA EDB Temp (F)	0		
RA EDB Temp (F)	72		
RA EWB Temp (F)	53		
Winter Off Wheel DB	59.3		
Winter Off Wheel WB	45.9		
Rotary Wheel Latent Efficiency	80.5%		
Package Performance			
Reheat Method			
Cooling LAT DB			
Cooling LAT WB			

COOLING/HEATING Supply Air 55°F db 54.5°F wb 62.4 gr/lb





COOLING/HEATING WITH


WRAP AROUND HEAT PIPE

COOLING/HEATING WITH

HOT GAS REHEAT COIL

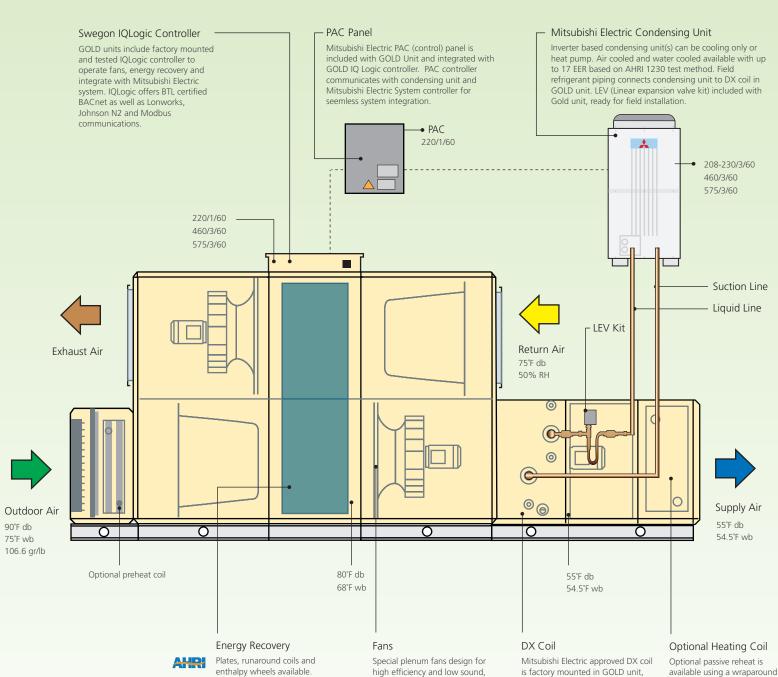
COOLING/HEATING WITH

Outdoor Air After Wheel Supply Air	Outdoor Air After Wheel Supply Air
After DX Coll Supply Ar	Alber DX Col.

g					I .
Reheat Method	None	None	Heat Pipe	Hot Gas Reheat	Hot Water Reheat
Cooling LAT DB	54.9	54.9	63	72.3	72.6
Cooling LAT WB	54.6	54.6	57.6	61	61
Grains	63.2	63.2	62.4	62.2	61.8
Heating LAT	72	72	72	72	72
Dimensions					
Cabinet Length	105.83"	150.71"	115.87"	139.76"	139.76"
Cabinet Width	62.99"	62.99"	62.99"	62.99"	62.99"
Cabinet Height	70.71"	70.71"	70.71"	70.71"	70.71"
Air Cooled Unit Solution					
Mitsubishi Condensing Unit	PUHY-P192YSLMU-A	PUHY-P192YSLMU-A	PUHY-P168YLMU-A	PURY-P192YSLMU-A	N/A
Mitsubishi Branch Controller	N/A	N/A	N/A	CMB-P108NU-HA1	N/A
Hyper Heat Solution					
Mitsubishi Condensing Unit	PUHY-HP192TSJMU-A	PUHY-HP192TSJMU-A	PUHY-HP192TSJMU-A	PURY-HP192YSKMU-A-H	N/A
Mitsubishi Branch Controller	N / A	N / A	N/A	CMB-P108NU-HA1	N/A
Water Cooled Solution					
Mitsubishi Condensing Unit	PQHY-P192YLMU-A	PQHY-P192YLMU-A	PQHY-P168YLMU-A	PQRY-P192YLMU-A	PQHY-P192YLMU-A
Mitsubishi Branch Controller	N/A	N/A	N/A	CMB-P108NU-HA1	N/A
	-				

Key Specifiable Standard Features:

- ECM Motors, direct drive plenum fans, CFM airflow station on supply and return fans.
- Enthalpy wheel is aluminum substrate with 3 angstrom molecular sieve desiccant, energy recover carry-over shall not exceed 0.45% as certified by a third party test agency.
- Enthalpy wheel shall have stepper motor allowing speed control from 0.5 20 rpm. Unit controller shall manage rotor speed to optimize energy transfer, purge sector airflow, and avoid frosting.
- Unit shall include factory installed and tested controls, field configurable to achieve specified operating functions. Controls shall maintain the airflow setpoint regardless of air density, filter loading or ESP.
- Units shall be service accessible from one side. Filters shall be side loaded and seal against fixed frame on all four sides of each filter.
- Cooling coil shall have minimum turndown of 7 15% based on Outdoor Unit Selection.
- LEV-AHU Kit shall be able to accept entering air temps down to 0 Deg F to the Coin in Heat Pump operation.
- Unit shall include factory engineered integration between AHU and Mitsubishi LEV Kit. LEV Kit and PAC control panel shall be factory installed, including refrigerant piping of LEV's and wiring of thermistors, LEV's and controls.
- Controls shall be BACnet IP native and BTL Certified.



GOLD SYSTEM APPLICATION MITSUBISHI ELECTRIC VRF

direct driven by 220, 460 or 575 volt

EC motors. Fans are variable flow

are limited to 50% turndown with

DX cooling. Models are available

from 500 to 16,000 cfm

and include airflow monitors.

Variable airflow arrangements

matched to Mitsubishi Electric

and leaving air conditions are

steel double sloped drain pan.

condensing units. Actual capacity

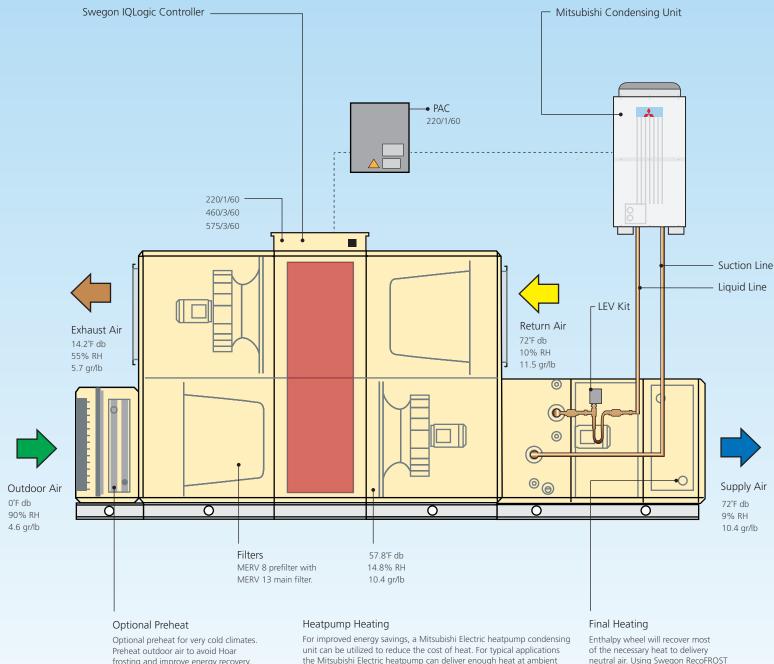
customer selected based on project

requirements. Coil include stainless

Standard GOLD RX AHRI 1060

certified 3 ang. enthalpy wheel

Optional PassiveHouse certified


GOLD RX models use special

enthalpy wheel and recover

80% + of the total energy.

recovers 80% + of the total energy.

WINTER

available using a wraparound coil around the DX coil. Reheat allows dry air at neutral temperatures to be delivered to the space using recovered heat.

frosting and improve energy recovery. Preheat can be water (glycol) or electric. Winter filters available.

TIP: If chilled water is being produced in winter, use chilled water to preheat outdoor air.

the Mitsubishi Electric heatpump can deliver enough heat at ambient temperatures above -13°F at COPs above 3.6 to meet the required supply air temperature.

Air cooled heatpumps will require periodic defrost. During these periods a supplemental heat source will be required. This can be accomplished with hot water coil, electric heat or any other heat source that can accommodate a 0-10 vdc control signal.

neutral air. Using Swegon RecoFROST control, the supply air is typically 58 °F leaving the enthalpy wheel. Some defrost may occur lowering the supply air temperature to 30 °F while defrosting.

Final heating can be accomplished with hot water coil, electric heat or any other heat source that can accommodate a 0-10 vdc control signal.